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This effort was initiated to help determine the

requirements and priorities for future research and
development related to new vertical flight technology such as
the tiltrotor aircraft.

The final report was completed in January 1992, but due to

unforseen delays in publishing,
available for distribution.

it has only recently been
Even though the summary of this

workshop was not available until now, the findings and
recommendations from this two day session have helped the FAA
to further define future actions in vertical flight noise

research and development.

The workshop had two objectives,

(1) review the status of research and development in
predicting and reducing tiltrotor noise, and (2) identify key
technical and operational issues and the methods to address

then.

Recent events with the military's V-22 Osprey Program and
Congressional interest in civil tiltrotor operations have
further highlighted the potential for this exciting new

technology.

Similarly,

impacts and noise are also being identified.
that this report summarizes was an initial attempt at

identifying the areas where critical research is required if
future civil tiltrotor operations are to be compatible with
the environment and gain public acceptance.

issues related to environmental
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SECTION 1
INTRODUCTION

The speed, range, and fuel economy of the tiltrotor aircraft make it a suitable candidate for short-to-
medium range (100 to 500 NM) commercial or executive transport applications. Tiltrotor aircraft
are expected to become a significant part of the civil rotorcraft market within the next 15 years.
Vertports, which are heliports that can accommodate commercial tiltrotors, will need to be planned
for urban areas to maximize the efficiency of vertical flight technology. One of the important issues
that will be addressed by regulatory agencies and industry is tiltrotor noise and its impacts on the
community, the passengers and air crew, and the airframe structure. Impact on the community will
be a particularly important issue since community acceptance is essential to the successful
development and operation of passenger carrying tiltrotors.

Under the sponsorship of FAA, the Georgia Institute of Technology hosted a workshop on the
tiltrotor noise issues on 28 and 29 March 1991. The workshop was organized by Dr. Krish
Ahuja, Head of the Acoustics Branch of Aerospace Sciences Laboratory of the Georgia Tech
Research Institiite and and a Professor in the School of Aerospace Engineering at Georgia Tech.

The workshop had two major objectives: (1) to review the status of research and development in
predicting and reducing tiltrotor noise; and, (2) to identify key technical and operational issues.
The second objective had both near term and far term implications. In the near term. the goal is to
arrive at a level of technical credibility that can support decisions to develop urban and inner city
markets. The long term goal is to target resources and actions which will lead to tiltrotor noise
abatement and effective control.

The opening session of this workshop consisted of an overview and a discussion of the physics of
tiltrotor noise mechanisms. A review of the available experimental data followed. A discourse on
the potential flight operational procedures to minimize noise impacts, and a general presentation of
industry and government perspectives concluded the workshop.

Subsequent sessions were available for participants to present observations on and experiences
with the XV-15 and V-22. Operational experiences include flight tests, wind tunnel tests, and
other simulations. Experiences with computational fluid dynamics codes, small-scale model
testing, and other related research were shared.




This document provides a summary of the presentations and discussions that took place during the
workshop. The report also includes the highlights of the discussions, the actions recommended,
and where possible, the parties responsible for various actions.




SECTION 2
THE WORKSHOP AGENDA AND PARTICIPANTS

The agenda of the workshop is shown in the following pages. A list of participants of the
workshop is attached as Appendix 1.




Workshop Agenda

Thursday, March 28

WELCOME - DR. D. GRACE,
Vice President and Director: Georgia Tech Research Institute, Atlanta, GA

INTRODUCTORY REMARKS - DR. K.
K. AHUJA, Head, Acoustics Branch & Prof. of Aerospace Eng.
Georgia Institute of Technology, Atlanta, GA

Overview of ARD-30
JIM MCDANIEL, Director, Vertical Flight Special Program Office
FAA Headquarters, Washington, DC

FAA Aircraft Noise Overview
STEVE FISHER, Project Manager, Vertical Flight Special Program Office
FAA Headquarters, Washington, DC

NASA Rotorcraft Program

Overview

MAJOR PAUL W. LOSIER, USA

Rotorcraft Program Mgr., Aeronautics Directorate
NASA Headquarters, Washington, DC

Break

Advanced Tiltrotor Transport

Market and

Technology Issues

GEORGE UNGER, Manager, Vehicle Aerodynamics
NASA Headquarters, Washington, DC

Lunch

Tiltrotor Noise Mechanisms and
Predictions

PROFESSOR ALBERT R. GEORGE

Cornell University, [thaca, NY

Tiltrotor Noise Reduction Studies

Some Reflections and Guidance From the Past

DR. FREDRIC H. SCHMITZ, Chief, Full-Scale Aerodynamics Research Division
NASA-Ames Research Center, Moffett Field, CA

Overview of NASA/LaRC Acoustics

Research Program

DR. JAMES C. YU, Asst. Chief, Acoustics Division & Manager, Rotorcraft R & T Office
NASA-Langley Research Center, Hampton, VA

Overview of NASA High-Speed

Rotorcraft Studies

WILLIAM J. SNYDER, Chief . Rotor Technology Branch,
NASA-Ames Research Center, Moffett Field, CA

Tiltrotor Acoustic Research at

NFAC

DR. MARIANNE MOSHER. Aerospace Engineer
NASA-Ames Research Center, Moffett Field, CA

Break




Tiltrotor Aeroacoustics Activity

at AFDD

DR. YUNG H. YU, Chief, Fluid Mechanics Division
Aeroflightdynamics Directorate (AFDD)
NASA-Ames Research Center, Moffett Field, CA

NASA/Army Tiltrotor

Aeroacoustic Model Program

LARRY YOUNG, Project Director, Rotorcraft Aeromechanics Branch
NASA-Ames Research Center,

Moffett Field, CA

Aeroacoustic Lessons Learned

From the Advanced Turboprop Program

JOHN F. GROENEWEG, Chief, Propeller & Acoustics Tech. Branch
NASA-Lewis Research Center,

Cleveland, OH

Theoretical Prediction of

Propeller Noise

NIGEL PEAKE. Research Fellow

Department of Applied Mathematics and Theoretical Physics
University of Cambridge,

Cambridge, U. K.

Tiltrotor Noise Prediction

Development

MR. ROBERT GOLUB. Manager, Noise Prediction Technology, Aeroacoustics Branch
NASA-Langley Research Center, Hampton, VA

Friday, March 29

Flight Test Programs at the

Langiey Research Center

DAVID A CONNER & KEN RUTLEDGE

Research Engineers, Acoustics Division
NASA-Langley Research Center, Hamptoun, VA

Tiltrotor Flight Test Experience &
Advanced Blade Development

DR. M. D. MAISEL

Chief. Flight Experiment Branch

NASA-Ames Research Center. Moffett Field, CA

Development and Testing of XV-1§
CLIFFORD MCKEITHAN. School of Aerospace Engineering
Georgia Institute of Technology, Atlanta, Ga.

Design & Operational Noise Issues

in the Future of Commercial Tiltrotors

HARRY STERNFELD, JR., Manager, Noise Technology & HARRY ALEXANDER
Boeing Defense and Space Group, Philadelphia. PA

Break




Preliminary Design & Operational
Considerations

CHARLIE COX, Chief Acoustics Engineer
Bell Helicopter Textron, Fort Worth, TX

Tiltrotor Aircraft Technology,

Where it Should Go

CHARLIE CRAWFORD. Head, Systems Development Branch
Georgia Tech Research Institute, Atlanta, GA

Three Dimensional Planning and

Noise Control

DR. CLIFFORD D. BRAGDON, Special Asst., Office of the Pres., Prof. of City Planning
Georgia Institute of Technology, Atlanta, GA

Lunch

Urban Compatibility: A Model
Ordinance

DEBORAH PEISEN, Systems Analyst

Systems Control Technology, Inc., Arlington, VA

What Will The Neighbors Think?
RON REBER, Manager, Commercial Tiltrotor Program
Bell Helicopter Textron, Fort Worth, TX

Rotorcraft Flowfield Diagnostics
DR. NARAYANAN M. KOMERATH, Associate Professor. School of Aerospace Engineering
Georgia Institute of Technology, Atlanta, GA

A Typical Program for Tiltrotor

Aircraft Aeroacoustics Research and Deveciopment

DR. K. K. AHUJA, Head. Acoustics Branch & Professor of Aerospace Engineering
Georgia Institute of Technology, Atlanta, GA

Break

Panel Discussion




SECTION 3
A SUMMARY OF THE PRESENTATIONS

3.1 INTRODUCTORY REMARKS

In his introductory remarks, Dr. Krish Ahuja of Georgia Institute of Technology used very
low frequency loudspeakers to demonstrate low frequency noise. At frequencies in the range ot 20
to 40 Hz at very moderate noise levels, the ceiling of the auditorium started to shake. The same
speaker was then used to play pre-recorded noise levels from XV-15 and V-22 aircraft, provided
by Mr. David Conner of NASA Langley Research Center. The noise from tiltrotor aircraft may
well dominate the low frequency portion of the noise spectrum and may be crucial to the success of
acivil tltrotor aircraft. The key message of the introductory talk was that it is a must that we know
as soon as possible what are acceptable noise levels from tiltrotor aircraft.

3.2 AN OVERVIEW OF FAA ACTIVITY

Mr. Jim McDaniel, Director of the Vertical Flight Program Office at FAA Headquarters,
provided an overview of the vertical flight research and development program. He provided an
overview of the Vertical Flight Program Office and its mission. This mission includes planning
and implementation of those actions necessary for the introduction of conventional rotorcraft,
tiltrotor, and other emerging powered lift aircraft into the National Airspace System (NAS). The
Vertical Flight Program Office conducts studies and efforts to develop and evaluate procedures,
systems, and techniques which will enable safer and more effective use of vertical flight aircraft.
This office is a national focal point for vertical flight programs at the FAA and promotes vertical
flight technology.

Mr. Steve Fisher, a project manager in the Vertical Flight Program Office (VFPO) provided an
overview of the FAA Tiltrotor aircraft noise R & D program. He described the interactions
between the Vertical Flight Program Office (ARD-30) and the Office of Environment and Energy
(AEE-100). Ia relation to tiltrotor aircraft noise, ARD-30 is concerned with tiltrotor noise
influence on the National Airspace System, its impact on design and flight operations, and its role
in terminal procedures. The Office of Environment and Energy (AEE-100) is responsible for



determining the technology for noise abatement as required by the 1972 Noise Control Act. This
office also determines the noise levels needed to support the environmental impact assessment. It is
the responsibility of this office to deal with matters pertaining to aircraft noise certification. Mr.
Fisher stressed that all scenarios of noise R & D planning must incorporate all aspects of tiltrotor
aircraft flight dynamics, such as airplane, helicopter, and conversion modes, steep angle
approaches, new or unique noise characteristics, noise footprint arcs reflecting circular approaches
and impacts from operating in close proximity to residential and urban areas. He also stressed the
need for all interested parties to have access to the results of the FAA R & D program. These
parties include federal agencies, state agencies, municipalities, associations, institutions,
manufacturers, and the general public. Mr. Fisher also talked about the Rotorcraft Master Plan
(RMP). This plan includes inputs from various elements in the FAA.

3.3 AN OVERVIEW OF NASA HEADQUARTERS ACTIVITY

Major Paul Losier, USA, Rotorcraft Program Manager - Aeronautics Directorate at NASA
Headquarters, provided an overview of the rotorcraft technology program at NASA. He showed a
diagram of funds expended for military rotorcraft and those for civil rotorcraft in the years 1982
through 1990. It portrayed a bleak picture of how the spending for military rotorcraft had increased
significantly since 1987, while the trend for the civil rotorcraft was just the opposite. Major Losier
described the commitments of the NASA Office of Aeronautics Exploration and Technology
(OAET). It is committed to position U. S. industry for continued aerospace leadership into the 21st
century. He alluded to tive specific aeronautics strategic thrusts, two of which are applicable to the
subject of the workshop. They deal with : (1) subsonic aircraft/national airspace and (2) high-
performance military aircraft. Each of these thrusts has a number of key objectives. The relevant
objectives corresponding to these two thrusts are:

1. Developing critical technologies for safe, economical and environmentally acceptable operation
of rotorcraft in the national airspace system.

2. Developing critical technologies for rotorcraft capable of high speed, automated nap-of-the
earth flight and 50 % greater agility.

All aspects of acoustics, in particular noise control concepts, are key elements to meeting the
objectives.




Major Losier indicated that a commercial tiltrotor was indeed feasible and economically
competitive. Envisioning the scenario for year 2010, he listed problems caused by congestion,
increased environmental concern, increased traffic control complexity, limited airport expansion,
increased travel, increased need for helicopter emergency medical service (EMS) and disaster
response. Further, the expansion of industrial operations into rural areas compounds
transportation needs. He stressed the usefulness of a commercial tiltrotor aircraft in supporting
these needs. Among various attributes the commercial tiltrotor must display, reduced noise was at
the top of the list.

Mr. George Unger, Manager of Vehicle Dynamics at NASA Headquarters, provided ar
overview of the advanced tiltrotor aircraft market and discussed the technology issues. He
discussed civil tiltrotor missions and applications, technological benetfits, and projected total
operating costs. He provided a very succinct description of the market analysis studies for tiltrotor
aircraft.

Mr. Unger stressed the need for a “market responsive design.” Such a design uses few V-22
military components. It will have a market in excess of 2600 medium tiltrotor aircraft with a $6-7
billion in revenue per year. It will grow by the vear 2000 to encompass all sizes. Civil tiltrotor thus
has a large market and is the only passenger-carrying market large enough to amortize initial
investment (with a minimum of 330 aircraft produced at affordable rates). Tiltrotor aircraft
operating costs will be higher than those for the fixed wing alternatives in this market and must be
offset by sites convenient to demand areas or must be subsidized by regional agencies to support
regional goals and economic growth.

It was recommended that NASA should continue providing support for a market responsive design
and FAA should develop standards for early introduction. A flight demonstration/validation plan
should also be developed under a partnership concept.

Mr. Unger also talked about the research priorities applicable to “barrier” issues, design base
technologies, and enhancing technologies. Some of the noise issues under these research priorities
are external noise levels in approach, steep approach criteria, 4-bladed rotor design, interior noise,
and active control of noise, vibration, stability, and aeroelastcity.

Unger named four key technology goals for civil tiltrotor aircraft:




(3]

. Residential vertiport operation should not exceed 65 Ldn for 50 flights/day within 50 acres of

exposure.

Steep approach IFR certification should include level 1 handling qualities to 15 degrees and
should ensure single engine failure safety.

Tiltrotor aircraft should provide passenger comfort associated with airplanes and cabin noise
level less than 78 dBA and vibration levels less than 0.03 g’s in cruise flight.

Tiltrotor portal-to-portal cost should be similar to that of a fixed wing alternative and have a
gross weight less than 1000 lbs per passenger. It should have a price less than $350,000, and
a cruise lift to drag ratio (L/D) of greater than 12.

Referring to the civil tiltrotor technology goals, Mr. Unger listed noise reduction as a major

challenge for the marketability of the civil tiltrotor. He outlined the noise benefits of advanced

technology blades and the need for increasing the number of blades and reducing the tip speed to

reduce noise from tiltrotor aircraft.

Mr. Unger also provided an extensive list of near term (2-4 years) and long term (4-8 years) goals

for tiltrotor noise research and technology. The highest priority listed was reducing blade

vortex interaction (BVI) generated noise.

The tasks defined by Mr. Unger were as follows:

Near Term Tasks:

1.

Conduct detailed noise surveys of V-22 and XV-15/ATB flights in approach with
matrix of speeds & descent angles.

2. Conduct tip shape prediction & experiments on ATB blades.

Develop pressure-tapped blade data in high acoustic quality wind tunnels.

. Conduct simulated aircraft noise abatement maneuvers using cuing and displays for proper

noise minimization.

. Validate the research code for BVI prediction.

Long Term Tasks:

I.

Assess the potential of 4+ bladed rotors for noise reduction.

2. Assess the active rotor control for noise reduction.
3.
4. Assess innovative devices for noise control

Provide a production code for BVI prediction.

- active tp devices
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- variable diameter.

The following areas of university involvement were included in Mr. Unger’s concluding

comments.
Universities could:
1. Use the existing data bases to understand noise sources and predict them.
2. Predict tip vortex size, strength, and dissipation from the first principles.
3. Evaluate and establish retreating blade noise sources.
4. Develop innovative solutions to:
- low speed velocity measurement
- display of exterior noise to pilot
- structural control of interior noise.
5. Participate in NASA research.

3.4 A TUTORIAL ON TILTROTOR NOISE MECHANISMS

Professor Al George of Cornell University gave a tutorial on tiltrotor noise mechanisms and

predictions. He also showed a helium bubble flow visualization of fountain effects using an

experimental setup in his laboratory. He pointed out that the key differences in noise of tiltrotor

aircraft compared to a helicopter stem from the differences in the associated aerodynamics. These

differences are associated with :

l.

Wing effects: Since a helicopter does not have a wing, the tiltrotor combined with a wing has
unique features associated with ground plane, fountain, and stall/separation effects.

. Induced velocity effects: Induced velocity associated with tiltrotor aircraft can affect the blade-

vortex interaction.

. Other: Other effects include rotor spacing and phasing, which can affect low frequency noise

and noise directivity; near field of tips on fuselage, which can affect cabin noise: and other
rotor/airframe interactions.

The lessons from Professor George’s talk can be summarized as follows:

1.

Current aecrodynamic understanding and characterization of highly unsteady and turbulent flow

fields associated with hover are insufficient to determine definitive noise impacts.
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2. Better prediction capability is needed for wakes and BVI aerodynamics analysis.

3. Most but not all noise mechanisms are understood physically.

4. Given the aerodynamics, accurate prediction methods are available for discrete frequency and
impulsive noise mechanisms. Prediction methods for broadband noise, however, need further
improvement.

5. Work towards predicting noise from highly unsteady turbulent flows interacting with rotors
needs to be done.

Some of the research priorities in the area of tiltrotor aircraft noise are summarized below:

1. Characterize and control fountain flow phenomena through flow and acoustic experiments and
acoustic analysis. Also examine ground effects of this phenomena.

o

. Perform calculation of BVI for various tilt angle/descent/speed operating conditions and relate
these to noise footprints impacts.

3. Measure noise signature and spectra for a wide range of precisely determined tiltrotor operating
conditions.

4. Develop improved broadband noise predictions near the rotor plane.

5. Develop a capability for free-wake calculation for tiltrotor aircraft for a wide range of operating
conditions.

6. Improve the BVI aerodynamics and aeroacoustic analyses for given wake and blade

geometries.

3.5 LESSONS LEARNED FROM PAST TILTROTOR NOISE STUDIES

Dr. Fredric Schmitz, Chief of the Full-Scale Aerodyanamics Research Division at NASA-Ames
Research Center, provided his reflections on lessons learned from past tiltrotor noise reduction
studies. Schmitz pointed out that, assuming that perceived noise level (PNL) and effective PNL
(EPNL) are adequate measures of tiltrotor annoyance, the three most important factors that can be
used to mitigate external noise are: (1) tiltrotor design, (2) flight trajectory management and vehicle
configuration control, and (3) tiltrotor terminal site selection. Dr. Schmitz then alluded to a number
of earlier studies since 1972 on noise mitigation. He then discussed the design characteristics of
Vertol 160 tiltrotor aircraft and discussed various tiltrotor acoustic performance models in existence
applicable to tiltrotor aircraft noise. Dr. Schmitz presented a number of noise footprints as PNL
comparison between maximum performance takeoff and other modes of takeoff (helicopter.
conventional takeoff, landing, vertical ascent, extended vertical ascent). He also provided an
acoustic annoyance profile of Palo Alto and San Carlos as a function of current technology and
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future technology. These profiles were presented in the form of reactions of people to noise versus
number of people. The reactions included no reaction, sporadic complaints, widespread
complaints, threat of legal action, and vigorous action.

Using trends derived from Boeing Vertol Whirl and other large-scale data and validation of tltrotor
computer model trends using hover data. Dr. Schmitz listed the following parameters as the key
design parameters influencing rotor noise: (1) tip speed, (2) thrust, (3) number of blades, (4) blade
tip shape, ( 5) blade planform, (6) airfoil section, and (7) blade twist. He also provided a design
comparison of quiet and standard tiltrotor aircraft in terms of characteristics, performance, weight
and noise. The major conclusions drawn by Dr. Schmitz from early work are listed below:

1. The most subjectively annoying tiltrotor noise is caused by BVI. It sets the level of PNL in
many terminal area operations.

t2

. Some reducton of PNL is possible through blade tip planform changes.

3. Flight trajectory management can be effectively used to mitigate PNLs in noise sensitive areas
near vertiports sites.

4. Land use near a vertiport will determine the optimum (minimum) noise abatement profile.

S. The most effective way to control overall sound pressure levels (OASPL) and PNL is to
control : (a) tip speed and (b) disk loading. The number of blades plays a smaller role in
controlling PNLs but is important in controlling OASPL.

6. 5-10dB PNL reductions are achievable with some performance sacrifices, but 10-20 dB PNL
reductions are very difficult and will require major investment in basic noise reduction
technology, new noise reduction concepts, and/or new vertical take-off and landing (VTOL)
concepts. Likewise, 5-10 dB reductions in OASPL are achievable with minor performance
sacrifices, but 10-20 dB reductions in OASPL will be difficult but will probably be achievable
with significant performance sacrifices.

The recommendations made by Dr. Schmitz are summarized below.

1. Establish a level of tiltrotor noise reduction required for acceptable operation at specified
classes of vertiports.

2. Undertake a further market analysis to evaluate the use of tiltrotor aircraft at these selected
vertiports subject to realistic commercial acoustic and performance constraints.

3. Divide the civilian noise reduction efforts into two research foci: a near term focus and a long
term focus. The near term focus should aim tor 5-10 dB PNL reduction through extrapolations
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of existing methods and technologies. The long term focus, on the other hand, should aim at
reducing PNLs by 10-20 dB through development of innovative technologies.

4. Validate noise reduction technologies using high fidelity experiments where it is possible to
confidently isolate particular noise reduction methods and techniques.

5. Focus emphasis on reducing tiltrotor noise BVI since BVI noise sets the level of annoyance of
tiltrotors.

3.6 AN OVERVIEW OF NASA LANGLEY ACTIVITIES

Dr. James C. Yu, Assistant chief of the Acoustics Division at NASA Langley Research Center,
provided an overview of NASA Langley’s rotorcraft acoustics research program. Langley’s
rotorcraft program is focused on both civil and military needs and has the goal of developing and
validating innovative technology for cost-effective design of highly efficient, low noise and
vibration aircraft. Dr. Yu described the objectives and recent accomplishments under the
following five areas of the rotorcraft acoustics program: (1) fundamental analysis and knowledge
base, (2) system noise prediction and validation, (3) design-for-noise methodology, (4) innovative
noise reduction concepts, and (5) interior noise control. Dr. Yu also provided some background on
Langley developed prediction codes, which were later covered in more detail by Mr. Robert
Golub, also of NASA-Langley. He also talked about the NASA/Army tltrotor aeroacoustics model
(TRAM) that will provide an advanced technology testbed for next generation quiet and highly
efficient tiltrotor systems. This is a large size model (approx. 25% full scale) for scaling fidelity,
has a fully instrumented blade, and can be configured for isolated rotor, semi-span model. or a
full-span model. It is likely to prove to be a national resource for a coordinated etfort. It is slated
for a broad range of testing in the Duits-Nederlandse Wind Tunnel (DNW), 40 x 80 wind tunnel,
Transonic Dynamics Tunnel (TDT), and 14 X 22 wind tunnel in FY 93-95.

Dr. Yu also presented selected ground noise contours generated from XV-15 tiltrotor far-field
acoustics flight tests. He also alluded to NASA/Navy V-22 tiltrotor far-field acoustic tests. Dr. Yu
referred to design-for-noise methodology development. The key objective here is to develop an
integrated rotorcraft design and optimization methodology including performance, aerodynamics,
dynamics and acoustics and to provide a methodology for systematic acoustic tradeoffs for low
noise rotorcraft development. This is a new approach that calls for optimum integration of a
number of technologies. Current efforts are aimed at acoustic design tradeoffs for the XV-15 and
for integrated rotor design and optimization through combined acoustic/performance optimization.
Such combined acoustic/performance optimization is accomplished through a judicious
combination of appropriate noise prediction codes (such as WOPWOP) and performance,
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aerodynamics and dynamics prediction codes (such as CAMRAD/JA). Appropriate account is
taken of all the design variables, such as blade planform, tip speed, rotor radius, and number of
blades. Additional constraints are imposed by the acoustics, such as no shocks allowed on the
blades, or no blade-vortex interaction allowed. These constraints can be removed as the prediction
technology becomes available to predict high speed interaction (HSI) and BVI noise. He discussed
ongoing programs on innovative rotorcraft noise reduction concepts. Three concepts mentioned
relate 10 vortex alleviation, active flap control, and double-swept tip; however, no results on these
concepts were presented. Dr. Yu described the active control effort ongoing at NASA Langley to
control interior noise.

Technology thrusts at NASA Langley for the future are as follows:

Correlation of airloads and BVI.

Analytical prediction of BVI and shock noise.

System Noise prediction and validation for advanced aircraft.
Comprehensive knowledge base for tiltrotor noise.
Design-for-noise methodology for rotorcraft.

Validation of innovative noise concepts.

Validation of advanced active interior noise control concepts.

I T T T

Synergistic cooperations with NASA Ames, FAA, Department of Defense , industry and
academia.

3.7 AN OVERVIEW OF NASA-AMES/U. S. ARMY ACTIVITIES

Dr. John Zuk of NASA Ames Research Center provided an overview of NASA Ames high
speed rotorcraft activities on behalf of William J. Snyder, rotorcraft coordinator and chief of
Rotorcraft Technology Branch at NASA Ames. The acoustics activities at NASA Ames run in
close cooperation with NASA Langley and the U. S. Army. Dr. Zuk focused on future directions.
He alluded to a high speed rotorcraft contracted study, the result of which was the selection of
candidate high-speed rotorcraft. Out of a total of 20 potential concepts, preliminary designs of
rotorcraft with five concepts were proposed. These were: (1) conventional tiltrotor, (2) canard
tiltrotor, (3) folding tiltrotor, (4) variable diameter tiltrotor, and (5) tilt wing. Out of these five
designs, two were selected as the prime candidates for future development. These were: the
folding tiltrotor (FTR) and the canard tiltrotor (CTR). The latter is to be equipped with swept
blades. Dr. Zuk then gave a list of key areas of technology investment along with a very
comprehensive and useful block diagram on what it will take to start from the existing research

15




and technology base and accomplish the final technology base for advanced tiltrotor transport.
Establishment of advanced civil tiltrotor requirements, definition of quiet, high speed rotors, civil
tiltrotor simulation to explore steep approach limits, model-scale testing, large-scale testing in wind
tunnels, and flight demonstrations were some of the key elements to establish the technology base
for advanced tiltrotor transport.

Dr. Zuk pointed out that tiltrotors are considered to be the mainline configuration for NASA Ames
future high speed rotorcraft activity. Alternative configurations, specifically tiltwings and variable
diameter tiltrotors will also be investigated as they offer certain advantages. Dr. Zuk's overview is
summarized as follows:

1. The tiltrotor and/or related vehicles appear to be leading candidates for alleviating the
transportation congestion problem of the nation.

(L8]

. Noise is a barrier issue for advanced rotorcraft in this role, but low noise without productivity
gains is a losing proposition. Economics is still king!
3. Inwoductory passenger service with tiltrotors must rely on operational control of noise, i.e.,
operating in non-sensitive areas and using design parameters such as tip speed.
4. Full exploitation of advanced rotorcraft in passenger service will be the payoff of extensive
research that provides the technology base for low noise, high speed (productivity)
configurations.

Dr. Zuk also presented a number of wish lists in the form of ultimate "deliverables and payoff™
future research programs to develop a matured advanced tiltrotor transport technology. These
wish lists are summarized below:

1. High quality tiltrotor airloads data base.

(9]

. Improved comprehensive computational fluid dynamics (CFD) analysis methods for tiltrotor
Iransport rotors.

3. Tools for designing low-noise, high speed tiltrotor transport rotors.

4. Validated analytical methods and technologies which pay off in low noise and high
performance tiltrotor transport designs early in the next century and support U.S. leadership
in tiltrotor technology.

5. Defined noise footprints and airspace requirements for vertiport design.

6. Validated flight and air traffic control procedures to minimize noise and maximize efficiency.

7. Validated control/display concepts for precision control and acceptable pilot workload.
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8. Civil tltrotor cockpit design and crew training guidelines.
9. Validated technology base for low noise, high speed tiltrotor transport rotor designs.

Dr. Marianne Mosher of the Rotorcraft Aeromechanics Branch at NASA Ames Research
Center provided an overview of past, current, and future rotor research at the National Full-Scale
Aerodynamics Complex (NFAC) facilities. These facilities consist of 40 by 80, 80 by 120, and 7
by 10 foot wind tunnels; an outdoor aerodynamic facility (OARF); and the computational facilities
at Ames consisting of CRAY Y-MP, CRAY 2, and a number of workstations. Dr. Mosher briefly
described past research on tiltrotors, which involved: (1) the XV-3 , (2) Boeing and Bell
rotor/wing stability tests, (3) XV-15 propeller performance testing, (4) XV-15 aircraft testing in a
40 by 80 foot wind tunnel, (5) a JVX hover evaluation at OARF, (6) a tiltrotor wake study, (7) a
V-22 download alleviation study, and (8) a model-scale hover study. Dr. Mosher then presented
selected data from these studies.

Current research at NFAC includes rotor/wing tests in a 40 by 80 foot wind tunnel, in-flight
rotorcraft acoustics program, and aerodynamic modeling of tiltrotors with computers. Current
testing involves rotors associated with V-22, advanced technology blades (ATB), and XV-15.
Testing of V-22 rotors with wing is also part of the current plans. These tests are being conducted
for tip Mach numbers of 0.575 and 0.625, and tunnel Mach numbers of 0.15, 0.20, 0.25, and
0.30. The in-flight rotorcraft acoustics program (IRAP) includes flight tests with helicopters and
tiltrotors with rotor systems identical to those tested in NFAC, correlation of computational and
experimental data. and wind tunnel and flight noise data.

The current tiltrotor computational research at NFAC is directed at :

1. Prediction of tiltrotor performance and loads through CAMRAD/JA and EHPIC codes.
Analyses for prediction and reduction of rotor/wing downloads through Panel methods and

t9

finite difference methods.
3 BVImodeling.

Of particular note is the future planned tiltrotor research by the Rotorcraft Aeromechanics
Branch at NASA Ames. It consists of the following six objectives:

1. Document V-22, XV-15, and ATB rotor noise in on-going 40 x 80 foot tunnel test program.
- Near field noise comparison for each rotor
- V-22 noise with and without wing
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2. Perform small-scale V-22 rotor/wing acoustics experiment in hover.
- Isolated rotor
- Rotor/wing design sensitivities to noise

3. Acquire XV-15 aircraft noise in-flight with YO-3A aircraft under in-flight rotorcraft acoustics
program (IRAP).
- Quantify BVI noise in approach
- Provide insight into scaling laws
- Determine low noise flight profiles

4. Assess noise field for tiltrotors in transition flight in 80 x 120 ft. tunnel test using large-scale
V-22 and XV-15 metal rotors.
- Rotor in transition flight with and without rotors
- Determine low noise flight profiles

5. Pursue development of CFD models for airloads and noise prediction and identify noise
reduction designs and operating procedures.

6. Investigate unique tiltrotor noise sources in full-span with tiltrotor aeroacoustic model and
validate computational acoustics models.

Dr. Yung Yu, chief of the Fluid Dynamics Division at U. S. Army's Aero Flight Dynamics
Directorate (AFDD), AVSCOM, located at Ames Research center, provided an overview of tiltrotor
aeroacoustic activities at AFDD.

The U. S. Army is the lead service for DoD rotorcraft R&D programs. Its rotorcraft research
focus is on highly maneuverable, low observable technology, which is driven by military mission
requirements as well as by fly-neighborly concepts. The military mission requirements include
deep penetration and clandestine operations, and as such, low noise signatures are very important.
Similarly, fly-neighborly concepts include training pilots and modifying flight operations in
populated areas for reduced impacts on community noise. Dr. Yu stressed the need for
developing and validating comprehensive CFD codes for tiltrotor configurations.
Noise has been pointed out to be an important issue in each of the three flight regimes , namely,
hover, conversion, and cruise. Other important issues are download reduction in hover, vibrations
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and stability during conversion, and drag divergence, prop-wash, airframe aerodynamics,
transonic effects and loads during cruise. Dr. Yu presented selected comparisons between
measured and calculated results, and stressed a need for better turbulence modeling. He also
outlined the future plans for tests in DNW. The first phase of testing, which involved a Boeing
helicopter (360), MDHC helicopter (Harp), and a Sikorsky/UTRC aircraft (UH-60A, Berp Tip),
has been completed.

In the second phase (FY 91 - FY 94), higher harmonic control (HHC) tests with BO-105 pressure
blades are scheduled for 1993 and a tiltrotor model will be tested in 1994. Dr. Yu also mentioned
the existence of excellent cooperation between industry, NASA, and the Army. He concluded his
presentation emphasizing a need for innovative, high risk ideas to reduce the noise and vibration of
ultrotor aircraft.

Mr. Larry Young, project director of the NASA/Army tiltrotor aeroacoustic program (TRAM)
and group leader of high speed rotorcraft and tiltrotor technology at NASA Ames Research Center.
provided an account of the TRAM program. A 1/4 scale V-22 tiltrotor aircraft model is to be
developed for technology development and evaluation. The model will be configured for testing as
an isolated rotor, semi-span rotor/wing, and as a full-span model. NASA Ames, NASA Langley,
and the U. S. Army AFDD are the participating research organizations in the TRAM program.
Aeroacoustc tests are planned in several NASA and European wind tunnels in FY 93 through FY
1995.

The TRAM initial configuration is designed to accommodate acoustic and performance testing. It
will be equipped with two rotor balances. A sting balance will be used with the full-span TRAM.,
and tunnel scales will be used with the semispan TRAM. The right-hand rotor will be instrumented
with 100 to 200 pressure transducers. There are no plans to mount pressure transducers on the
fuselage/wing surfaces. All wing/empannage control surfaces and nacelle tilt will be ground
adjustable. Only the rotors will be scaled dynamically; the wing/nacelles will be structurally stff to
insure dynamic stability. Building this comprehensive model is an ambitious goal, but the results
generated from its planned testing will certainly establish "design for noise” capability for next
generation tiltrotor aircraft and help develop and demonstrate quiet and fuel efficient tiltrotor
systems.
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3.8 AN OVERVIEW OF NASA LEWIS ACTIVITIES

Dr. John Groeneweg, chief of the Propeller and Acoustics Technology Branch at NASA Lewis
Research Center, provided the benefit of his experience in the area of turboprops and turbofans
noise. He presented a brief summary of the advanced turboprop program at NASA Lewis and
compared the structural and operational aspects of turboprops and tiltrotors. He outlined the
research issues and programs on advanced turboprops. His briefing covered research on
community noise, near field noise and en route noise. He discussed the diagnostic methods to
measure blade pressures and blade temperatures. He also pointed out the advances made in the area
of aeroacoustic prediction codes, and elaborated on the implications of turboprop research for
tiltrotor aeroacoustics. His messages are summarized as follows:

1. Advanced Turboprop (ATP) prediction methodology is directly applicable to the "airplane”
flight regime of the tiltrotor aircraft.
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. The aeroacoustics of tiltrotor configuration is simpler than that for turboprops if the tiltrotor
configuration is restricted to single rotation, straight blades, low blade numbers, and subsonic
tip Mach numbers.

3. ATP angle of attack methodology could work for the tiltrotor aircraft in the airplane mode,

subject to validation for large angle of attack.

4. Aeroacoustic prediction capability developed for the advanced turboprop (ATP) is directly

applicable to ultrotor.

5. Angle of attack CFD and aeroacoustics prediction capability are critical for accurate tiltrotor

noise prediction.

6. Blade pressure (temperature) measurements are essentiai to 3D code validation.

7. A significant ATP data base on turboprop community noise, near field noise, and en route

noise exists, which could be used in code validation for tltrotor aircraft acoustics.

8. Aecroacoustics flight tests are essential.

9. Based upon NASA Lewis experience for inflight noise tests, formation flight is a validated and

valuable technique for inflight and far field noise source definition.

3.9 TILTROTOR NOISE PREDICTION METHODOLOGIES

Dr. Nigel Peak of the University of Cambridge described his and Professor Crighton’s model
for predicting propeller noise. He presented an asymptotic theory to estimate both near field and
community noise from propellers. This method provides very large savings in computer CPU
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time, especially for the calculation of near field noise (cabin noise). Peak and Crighton's
methodology can provide a practical and accurate prediction scheme for some aspects of propeller
noise at present. For example, it can predict the rotor only tones and also pylon-rotor interactions.
Future developments could include prediction of noise produced by interaction between propeller
and the wing.

Mr. Robert A. Golub, manager of Noise Prediction Technology at NASA Langley Research
Center, gave an overview of the prediction development applicable to tiltrotor aircraft. The key
program for noise prediction of rotorcraft is "ROTONET", which is one of the four dedicated
prediction program in the large Aircraft Noise Prediction Program (ANOPP). The other three
prediction programs are for predicting noise from propeller aircraft, conventional take-off and
landing aircraft, and supersonic aircraft. Mr. Golub described a heuristic development plan for
ROTONET resulting in four ROTONET codes, each successive code yielding an increase in
prediction capability. The noise sources either incorporated or yet to be incorporated are related to
thickness, loading, tip vortex formation, trailing edge, turbulence ingestion, engine, multiple
rotors, rotor unsteady aerodynamics, main rotor/tail rotor interact’..a wnere applicable, blade
vortex interaction, and quadrupole sources. Most sourccs applicable to helicopter noise have
already been incorporated and sources unique to tiltrotor aircraft noise will be incorporated in
planned future developments of the code.

ROTONET has the capability to predict basic blade interactions and multiple rotor acoustic
interactions. Prediction agreement with data continue to show "good and bad news” about
ROTONET capabilities. For example, Mr. Golub compared the measured and predicted data for a
MDHC 500E helicopter and obtained good agreement at 45 degrees head-on approach, but in the
aft arc, advancing sideline and retreating sideline, ROTONET underpredicted the noise. A good
agreement was also found in the helicopter mode for the XV-15 data. The lack of symmetry of
rotorcraft noises requires extensive data bases to be available for proper validation of ROTONET .

3.10 TILTROTOR FLIGHT TESTING

Mr. David A. Conner of the Aerostructures Directorate of AVSCOM and Mr. Ken Rutledge
of Lockheed Engineering and Sciences Company, both working with the Acoustics Division of
NASA Langley Research Center, described a comprehensive tiltrotor acoustic flight test program
conducted by the Langley Research Center. The purpose of this program is to build a
comprehensive, high-confidence data base of far-field acoustics for tiltrotor aircraft. Three specific
objectives of the program are:




1. Calibration and validation of noise prediction codes such as ROTONET and WOPWOP.

2. Characterization and identification of vehicle systems noise mechanisms.

3. Evaluation of terminal area operations especially in relation to hover, and "low-noise”
approach and departure procedures via nacelle tilt scheduling.

The acoustic tests were performed to acquire data during flyover, flyby, hover, and ascent and
descent. Acoustics vans, reference microphones, weather vans, balloon vans, ground
microphone arrays, and above-ground microphone arrays were used in these tests. During the
acoustic data acquisition, the tiltrotor conversion corridor or operational envelop of nacelle angle
versus airspeed included data points along the low, moderate, and high noise profiles. Conner and
Rutledge described the acoustic data base acquired at Maypearl and also at Moffett Field. Maypearl
acoustic data were acquired with the XV-15 tail number 702 with the original metal blades, while
the Moffett field data were acquired using XV-15 tail number 703 with the Advanced Technology
Blades (ATB). OASPL contours and EPNL data were presented. OASPL directivities at three tip
speeds, namely, 645, 708, and 771 ft/sec, were presented for the XV-15 with ATB.

A comparison of predictions with XV-15/ATB acoustic data was also provided. ATB measured
data were compared with OASPL predictions from WOPWOP using standard blade prediction. In
general, measured levels were about 5 dB higher than those predicted.

Conner and Rutledge then discussed their recommendations for future work for analysis and flight
tests. The recommendations for the analysis are summarized below.

Study source noise mechanisms.

Study fountain/ground plane effects.

Compare acoustic performance of ATB with standard blades.
Develop non-stationary techniques for ascent/descent regimes.
Resolve 3-D directivity character relative to RPM and weight effects.
Interact with ROTONET prediction team.
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Plans for future flight tests are as follows:

1. XV- TB Flight Test Program row’ in rl
- Measure lower hemispherical acoustic characteristics.

2

- Concentrate on terminal area flight conditions.
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- Evaluate noise reduction flight procedures identified in NASA Research Announcements
(NRA).

- Verify and further investigate noise mechanisms identified in Moffett Field test.

- Compare XV-15/ATB and original XV-15 blade noise characteristics.

- Correlate database with analytical methods.

2. ¥-22 Flight Test Program
- Conduct comprehensive V-22 acoustic tests.
- Measure lower hemisphere acoustic characteristics.
- Investigate low noise operational procedures.
- Identify critical noise problems in terminal area environment.
- Correlate V-22 database with XV-15 database and analytical methods.

Dr. Martin D. Maisel, Chief of the Flight Experiments Branch at NASA Ames Research
Center, presented a number of results based upon XV-15 tiltrotor acoustics flight experience,
including the Advanced Technology Blades. He also provided 10 references on the subject of
tiltrotor noise and presented a number of results from some of these references. A summary of
conclusions drawn from his presentation is given below.

I -XV-
1. Noise levels are similar to those for a helicopter when in the helicopter mode.
2. The airplane mode is more than 10 dB quieter than helicopter or high nacelle angle tiltrotor
modes at constant airspeed.
“Twin Peak” BVI waveform in tiltrotor mode requires further investigation.
Approach and departure noise levels are sensitive to nacelle angle and airspeed.
Approach noise is reduced with lower glide slope angles.

o SRV T 0V

Flight techniques could be developed to significantly reduce terminal area noise.

-Fli jons - XV-15, Fl icrophon
1. Thickness noise is prominent in airplane mode in the vicinity of tip path plane.
2. Aft-cabin, forward flight noise levels are 5-8 dB quieter than hover mode.

I ic Tests - - -2

1. OASPL are sensitive to blade shape.
- Far-field: ATB quieter than V-22, XV-15 blades at same (Ct)/0.
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- Near-field: ATB, V-22 quieter than XV-15 blades.
2. DBA - Evaluation in work.
3. Difference between XV-15 & OARF sound levels requires investigation - possible
fountain-flow effect.

Overall

1. A broad tltrotor acoustic data base exists.
Finally, Dr. Maisel outlined the planned XV-15/ATB acoustic tests. They consist of:

1. Comprehensive terminal area evaluation (XV-15/ATB).
2. In-flight data acquisition.
3. Rotor/Airframe Airloads data measurements with pressure instrumented ATB.

Mr. Clifford McKeithan of the School of Aerospace Engineering and formerly the U.S. Army
representative on the XV-15 program, presented a summary of the development and testing of the
XV-15. He provided a comparison of tiltrotor performance with a range of other rotorcraft
concepts. In particular, he compared the flight envelopes, hover efficiencies, power required (as a
function of airspeed, minimum fuel flow loiter, vibration environment, hover noise levels, and
maneuver envelope. He then described the XV-15 flight envelope, conversion corridor, power
required in conversion and airplane, and crew station vibration levels and concluded that the XV-
15 has successfully completed more testing (both technical and operational) than any other
experimental aircraft today. Mr. McKeithan also gave an account of number of incidents involving
the impact of the noise from XV-15. In all cases, it appeared that the XV-135 is relatively a low
noise aircraft. He stressed that the tiltrotor concept has been proven to be sound and the results to
date show that the concept is ready for application and is suitable for a wide range of missions.

3.11 TILTROTOR DESIGN AND OPERATIONAL CONSIDERATIONS

Mr. Harry Sternfeld Jr., Manager of Noise Technology at Boeing Defense and Space Group
Helicopter Division and his colleague Mr. Harry Alexander provided an overview of design and
operational noise issues in the future of civil tiltrotors. Referring to "Civil Tiltrotor - Missions and
Applications, Phase 1I: The Commercial Passenger Market,” they talked about the cabin and
community noise and its control through passive and active means. They also discussed lowering
noise through increased spacing of fuselage/proprotor and through low noise blades and tip
configurations. They provided a relative evaluation of cabin noise levels for current aircraft and
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indicated that the V-22 cabin noise levels (untreated) are much higher than those of the existing
(treated) aircraft and that substantial acoustical treatment will be required. They also showed that
for a given V-22 rotor and tip Mach number and flight speed, the noise impinging on the fuselage
can be reduced significantly by increasing the distance between the fuselage and the rotor tip. For
example, by changing this distance from 24 inches to 36 inches, the noise impinging on the
fuselage can be reduced by 3 dB. Sternfeld and Alexander then provided an analysis of the weight
of the wing and cabin insulation required to achieve 78 dBA in the cabin as a function of tip
clearance. They showed that a potential weight saving could be obtained by proper choice of
clearance between the blade tip and the fuselage.They also indicated that further weight savings
could be obtained by implementing active noise control methodology.

As pointed out by a number of previous speakers in this workshop, Mr Sternfeld and Mr.
Alexander also highlighted the benefits of ATB design and those resulting from increasing the
number of blades. They showed that the effect of increasing blade number is more obvious on
dBC and the sum of harmonics, rather than on the PNL or dBA.

The dominance of very low frequency noise in the the tiltrotor noise spectrum is a major concern.
This noise can dominate in the frequency rar. ge of 20 Hz to 80 Hz. Although the dBA levels may
be low, because of the frequency weighing, the effects on building and household items, in terms
of vibration and rattle due to relatively high Sound Pressure Levels at the blade passage frequency,
can be particularly annoying.

Therr concerns, and recommendations for noise reduction are summarized below:

Internal Noise

1. Since the tiltrotor frequencies are 1/4th of those of the turboprop aircraft, cabin levels of the
order of 78 and 85 dBA r.aay not be appropnate, and experimental research is required to
establish what may be acceptable.

2. Active control techniques could minimize weight of the passive insulation, and developmental
work is needed in this area.

3. Increased spacing between fuselage/proprotor is attractive for new commercial design.

4. Research and development on low noise blades /tip configurations is urgently needed.




Community Noise

1. Community noise can be a potential show stopper for tiltrotor aircraft.
2. The near-term solutions for abating community noise are:

a. Follow noise abatement profiles in terminal areas.

b. Incorporate low noise tip shaping, blade planform, twist, and airfoils in the

current designs.

c. Operate the aircraft at reduced tip speed in hover and conversion.

3. The long-term solutions for abating community noise are increasing the number of blades and
implementation of active noise control techniques.

Mr Sternfeld and Mr. Alexander also provided recommendations for near term and far term noise
research, as summarized below.

Near Term Research

1. Use simulation and air vehicle assets to develop low noise operational procedures and noise
database.

2. Develop theory for noise prediction: hover, conversion, cumulative exposures.

3. Experimentally investigate tiltrotor blade pressures and acoustic sources (pressure instrumented
blade).

4. Analytically and experimentally investigate blade noise reduction: sweep, tip shape, airfoil,
planform, solidity.

5. Develop and test low noise rotor for a CTR-22C aircraft (civil version of a MV-22 Osprey).

Far Term Research

1. Continue attacking noise at its source.

2. Analytically and experimentally investigate noise and vibration implications of number of
blades.

3. Conduct research on active suppression of external noise.

Mr. Charles Cox, Chief of Acoustics Technology at Bell Helicopter Textron, Inc., expounded
upon the tiltrotor acoustics preliminary design and operational considerations. He discussed the
low noise features of tiltrotor aircraft, compliance with noise criteria, design approach, flight
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trajactory management, and research priorities. He presented typical noise spectra and noise
contours for the XV-15.

A summary of the presentation by Mr. Cox is given below:

1.
2.
3.

10.
11.

12.

Tiltrotors in airplane mode easily meet helicopter flyover noise limits.
Tiltrotors also comply with helicopter take-off limits.
Tiltrotors just meet helicopter approach noise limits at some nacelle til/airspeed
combinations.
Approach noise originates from near-parallel intersections of each blade with a previously
shed tip vortex.
Tip shape concepts offer potential for diffusion of blade tip vortices, hence BVI noise.
XV-15 noise varies greatly within normal operating conditions.
Tiltrotor is 10-15 dB quieter in the airplane mode compared to the helicopter mode. Noise
levels in the conversion mode fall in between the airplane and the helicopter mode.
Nacelle angle is a major operational variable affecting flyover noise of tiltrotor.
Delaying conversion to helicopter mode reduces XV-15 dBA noise contour area by 30%.
“Quietness” potential resulting from design changes in tip speed and planform/tip shape is
high. The “quietness” potential from changes in the number of blades and blade area is low
and from changes in airfoil is from low to moderate.
“Quietness” potential resulting from changes in flight trajactory management associated with
nacelle tilt and airspeed is high. The gains from changes in glideslope are moderate.
Further research needs to be done in the area of analysis/design applicable to both models and
vehicles through the following technology tasks:
a. Low tipspeed maintenance.

. Tip vortex diffusion.
. Fountain effect minimization.
. Accessory noise control.
. BVI corridor definition.

Steep approach criteria.

@ ™™ 0o o o o

. Noise abatement (procedures) simulation.

Mr. Charles C. Crawford, Chief Engineer of the Aerospace Sciences Laboratory at Georgia
Tech Research Institute, gave an overview of the direction that powered-lift (including tiltrotor)

technology should take. Along the line of some of the other speakers at this workshop, Mr.

Crawford provided a short historical perspective of the development of tiltrotor and discussed the

27




Phase I and Phase II tiltrotor studies earlier alluded to by Mr. Unger of NASA Langley. He also
highlighted potential differences between tiltrotor aircraft and tiltwing aircraft. Referring to steep
angle approaches with the two types of aircraft, Mr. Crawford indicated that the flight characteristic
issues of the two aircraft are different.

Mr. Crawford’s key points can be summarized as follows:

1. Providing stall-free approach corridor and conversion will be the biggest aerodynamic
challenge for tiltwing configurations.

Different approach angles for different configurations may be appropriate.

Passenger comfort may limit both configurations to suboptimum noise abatement flight paths.

ESRVS I A

Bringing air carriers, the public, and local governments to an acceptable level of confidence for
both tiltrotor and tilt-wing will be a major challenge.
5. Simulation technology should play a key role in determining environmental acceptability.

3.12 PROPER LAND USE PLANNING AND PUBLIC ACCEPTANCE

Dr. Clifford R. Bragdon, Professor of City Planning at the Georgia Institute of Technology,
discussed the impact of tiltrotor aircraft noise in relation to three dimensional planning. Dr.
Bragdon describes city and town planning as a professional discipline that addresses proactive
planning with a goal of compatible development of land as a finite resource. He stressed that to be
effective, planning should examine land use as a three-dimensional challenge. This involves aerial,
surface. and subterranean aspects.

Dr. Bragdon mentioned that there are nearly 40 different types of land use strategies that can be
applied to noise abatement and control. These strategies range from comprehensive master
planning, zoning, capital improvements programming, environment site design and review, to
building codes and sound insulation standards. Physical acoustics and psychoacoustics should be
applied to understanding land management as well as political acoustics. To t . effective, these
strategies need to be actively integrated and supported by both the public (government) and private
(corporate) sectors of society. Dr. Bragdon presented several examples where these principles of
urban planning noise control are implemented.

Dr. Bragdon listed and discussed seven factors responsible for incompatible land use
conditions. These factors are:




Lack of accurate cost/benefit analyses.
Population growth.

Population distribution.

Proliferation of certain noise sources.
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Land encroachment where residential settlements often develop around transportation access
points, creating incompatible land use impacts.

6. Inconsistent enforcement provisions.

7. Consideration of land use without examining operational controls around airports.

Dr. Bragdon then cited examples of land use planning control, technological trends of land use
management, and their impact and control on vertical flight technologies.

Dr. Bragdon recommends a lengthy agenda of applied research to insure that vertical flight
technology becomes an integral part of the urban multi-model ransportation system. This list is
summarized below:

Complete standardized inventory/acoustical library of vertical flight aircraft.

Characterize acoustical signatures: both airborne sound and vibration.

Develop acoustic metric characterizations for both single event and time phased activities.
Develop two and three dimensional graphical and acoustical simulations.
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Prepare noise contour and geographic information systems (GIS) relational data bases and

models.

6. Inventory both regulatory and advisory noise and land use controls instituted by governmental
entities (i.e., local, metropolitan, and state).

7. Conduct territorial comparisons of aviation systems and human response in selected
environments.

8. Develop land use and noise compatibility matrixes specifically for vertical flight aircraft.
Develop a model planning process and community interface, including case studies.

10. Integrate planning guidelines and standards with the actual development of vertical flight
facilities.

11. Develop land use planning and noise control strategies and determine their relative
effectiveness.

12. Develop conflict-resolution management strategies as applied to vertical flight development.

13. Utilize role playing and gaming for vertical flight planning and development.
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Ms. Deborah Peisen of Systems Control Technology seconded Dr. Bragdon’s contention that
noise cannot be considered in isolation. We must be better prepared when integrating tiltrotor into
urban transportation than we were with helicopters. Ms. Peisen maintains that as existing
transportation conditions deteriorate, rotorcraft use will increase. Unfortunately, the capability of
rotorcraft to go anywhere means that its noise goes everywhere. Without the development of a
regulatory system concurrent with tiltrotor implementation, communities feel helpless and thus
become reactive. She warned that without real public acceptance of helicopters, we are now
proposing to introduce tiltrotors. We must use lessons learned from helicopters to avoid the same
problems with community acceptance of tiltrotors. We must work with the community by
designing an ordinance which gives the community a source of control. It creates a partnership in
solving urban transportation problems. The ordinance bridges the gap between community interest
and vertical flight industry interests. Ms. Peisen described various community concerns and
recommended a number of action items to alleviate them.

These action items can be summarized as follows:

1. Use standard definitions to lessen the chance of misunderstanding.

2. Define roles of federal, state, and local government . (Ms. Peisen’s presentation included a
long list of suggested responsibilities and roles of these sectors of the government.)

3. Provide an adequate balance between land use and zoning.

Mr. Ron Reber, Manager of Commercial Tiltrotor Program at Bell Helicopter Textron, Inc.,
although scheduled to make a presentation could not be present personally. He had passed on his
presentation to Mr. Jim McDaniel. Director of the FAA Vertical Flight Program Office. In
presenting Mr. Reber’s “talking points,” Mr. McDaniel raised the same question raised earlier by
Dr. Ahuja: “how good is good enough?” Mr. Reber’s main points are summed up as follows:

A tltrotor is quiet relative to a helicopter.

A tiltrotor does generate noise.

“How quiet is good enough?” must be answered.

Some communities are against rotorcraft operations.

Industry must make tiltrotor as quiet as possible.

Industry and the FAA must work together to minimize noise.

Tiltrotor service at airports is also noise sensitive.

Takeoff and landing at 90° to the active runway will often overfly populated areas.

Low noise procedures/steep approaches must be developed.
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0. Away from the airport, noise control is still critical.
1

Operations over a highway access is a good way to mask noise.
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12. Again, low noise procedures are needed to gain public acceptance.

13. Noise analysis, improved tip shapes, and lower tip speeds will all help the “cause.”

14. Industry and government must also do public demonstrations to let people realize what actual
tiltrotor noise is.

15. We must all work together to assure successful introduction of tiltrotors into the
transportation system.

3.13 ROTORCRAFT FLOW DIAGNOSTICS

Dr. Narayanan M. Komerath, an Associate Professor in the School of Aerospace Engineering
at Georgia Institute of Technology, presented ongoing efforts of rotorcraft flowfield diagnostics.
In particular, he covered the applications of laser doppler velocimetry (LDV), hot-film
anemometry, laser sheet visualization, wide-field shadowgraphy, phase-resolved pressure and
velocity measurements, and spatial correlation velocimetry. Laser velocimetric measurements are
routinely made at focal lengths of sever ieet in the large rotorcraft testing facilities and wind
tunnels of Georgia Tech. Examples - . such measurements near a modern rotor tip and of vortex
development over a rotor blade tip were given. Dr. Komerath presented extensive comparisons
between experimental and computational flow data related to rotor flow fields. Other data
presented by Dr. Komerath included: sharply varying inflow to a rotor, rotor-fuselage interaction.
time-averaged velocity above airframe, and airframe surface mean pressure. Results of a recently
developed, powertul technique of spatial correlation velocimetry that provides instantaneous
velocity vectors were particularly interesting. Dr. Komerath also alluded to the Georgia Tech
rotor/airframe interaction code and presented results documenting its validation against
experiments. Dr. Komerath had two concluding statements:

1. Diagnostic techniques are available for vehicle flow field for plane or point-wise measurements
in rotor flows.

2

. Overall flowfield of rotorcraft can now be predicted to provide the framework for acoustic
prediction and control.

3.14 A WISH LIST OF R&D PROGRAMS IN TILTROTOR
AEROACOUSTICS

In the last presentation of the workshop, Dr. Krish K. Ahuja presented a program wish list for
research and development in the area of tiltrotor aircraft aeroacoustics. Dr. Ahuja has a joint
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appointment in the research unit of the Georgia Institute of Technology as Head of the Acoustics
Branch in its Aerospace Laboratory and in the academic unit as a Professor in the School of
Aerospace Engineering.

Dr. Ahuja Presented the following four wish list items:

Wish List #1:  Determine the state-of-the-art for tiltrotor noise research.

Wish List #2:  Examine the technology readiness of first generation products.

Wish List #3:  Identify and resolve all research and development issues related to noise
generation, propagation, detection, prediction, and reduction.

Wish List#4:  Form a national tiltrotor noise committee/council.

Holding this workshop and the preparation of this report is part of item #1. Item #2 deals with a
systematic and thorough assessment of noise technology readiness of the first generation civil
tiltrotor. The following three programs are suggested:

1. Make a thorough assessment of noise features of competitive configurations
(e.g., tiltrotor vs. tiltwing).

2. Conduct a well-controlled human and structural response test with simulated
tiltrotor noise.

3. Conduct innovative research for interior noise control, including active noise control
and mechanically-tuned absorbers; conduct laboratory and flight tests similar
to those conducted recently for propfan assessment under the sponsorship
of NASA-Lewis Research Center.

Under item #3, Dr. Ahuja outlined interactions between various research issues. He stressed the
importance of building a highly versatile, small-scale tiltrotor aircraft model suitably scaled and
instrumented for aerodynamic and acoustic studies. Dr. Ahuja listed the novel features of tiltrotor
aircraft compared to a helicopter, gave a brief description of the so-called *“polar correlation”
technique to determine the location of a given source and urged its adoption to understand the
sources of tiltrotor noise. He also talked about the so-called “installation effects” and gave
examples of how these effects in conjunction with source location investigations have been
examined in the past. Once a small-scale model as described is available, Dr. Ahuja suggested the
following programs as part of wish list item #3.




1. Noise G (i
A. Theoretically, experimentally, and computationally evaluate various noise mechanisms of
tilrotor aircraft and rank them by relative importance. In particular, establish the effect of:

1.
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Different paths of tip vortices in the wake.

Higher disk loading.

Phasing between signals from two rotors.

Variable orientation of rotors and nacelles with respect to an observer.
Effect of wing-rotor wake interaction.

Blade loading differences due to higher twist.

Close passage of blade tips to the fuselage in airplane mode.

B. Conduct a systematic anechoic wind tunnel study on the installation effect of tiltrotor aircraft

noise.

3 Noise P .

Assess the applicability of current sound propagation models to tiltrotor aircraft noise. Develop a

code involving the effect of winds, atmospheric attenuation, ground effects, multipaths, and

shadow zones. In addition, make extensive measurements of atmospheric turbulence and other

meteorological parameters in conjunction with sound pressure levels to validate the propagation

codes.

3. Noise G . | p .
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Develop computational aeroacoustics (CAA) in conjunction with mean flow CFD codes.
Conduct an aeroacoustic optimization study.
Develop a numerical simulation (movie) for flow and noise.

Examine noise footprints with suitable parametric variation.

. Noise Detecti M ]

A. Conduct a laboratory survey with simulated tiltrotor aircraft noise to establish “how quiet is
good enough”.

B. Conduct a community survey when the full-scale vehicle is available.




C. Ensure that proper land use planning and operational procedure issues are included in both
surveys.

3. Noise Control

A. Implement active noise control for interior noise and far field noise.

B. Implement active control through smart structures.

C. Combine active control and mechanically tuned absorbers.

D. Scrutinize noise control methods developed recently for advanced propfans.

5. Predicti

A. Develop a code which couples various aerodynamic, source, and propagation models.

B. Emphasize modularity and consistency between models, especially the ability to incorporate the
most advanced models as they become available.

C. Correlate ROTONET and other helicopter noise codes with tiltrotor noise data and improve
ROTONET.

7. Full-Size Vehicle Testing

Develop a measurement program in consultation with all interested researchers.
a. Industry
b. Government, to include military and civilian agencies.
¢. University

8, Other Issues

A. Conduct a study to estimate the noise impact as a function of operational procedures.

B. Conduct a study of proper land use planning for vertiports (could well be done during planning
for Olympics in Atlanta).

Finally, under wish list item #4, Dr. Ahuja suggested that a national tiltrotor noise
committee/council should be formed that should act as a center for disseminating information
related to tiltrotor noise to all concerned researchers. Dr. Ahuja also proposed that future
workshops similar to this one be held to continue this intiative and support noise R&D efforts.
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Dr. K. Ahuja’s choice of two key areas of government future funding were:

1. Build a versatile small-scale model and conduct a controlled parametric study to identify
various noise generation mechanisms and test out various noise control methodologies. Also.
use the available data to verify prediction codes.

2. Conduct a laboratory study with simulated realistic tiltrotor aircraft noise on structural and
human response. (Will require low frequency noise sources.)

Dr. Ahuja’s suggestion on where the resources of the academic community be spent were:

1. To support and encourage interaction with industry and government.
2. Todevelop an all-inclusive code.
a. Conduct experiments with the small-scale model.
b. Computer simulation of
° Flight paths
° Flow around the vehicle
° Vibrations of the vehicle components
° Acoustic wave visualization
° Noise footprints

3.15 PANEL DISUSSION

A panel discussion was held after Dr. Ahuja’s presentation.
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SECTION 4

SUMMARY OF DISCUSSIONS DURING
QUESTION AND ANSWER PERIOD

This section includes a summary of discussions that took place during the question and answer

period.
4.1 FAA AND CERTIFICATION ISSUES

1. The overall budget of FAA for rotorcraft projects is in the vicinity of $9 million. This includes
overhead, salaries, operating budget, and other programs.

2. Both the Vertical Flight Program Office and the Office of Environment and Energy at FAA are
interested in noise work.

3. The current helicopter certification procedures are a nightmare. It is more difficult for Boeing to
certify a helicopter than a B-767, and “it makes more money on B-767's.” In fact, the current
procedures for helicopters amount to a mini R & D program. In flying, one establishes the
conditions for which one flies to establish the certification. On approach alone, in one case, over
100 approaches were flown to establish statistical validity. With the tiltrotor, there exists an
additional degree of freedom, and the certification will be even more complicated compared to that
for a helicopter. A simpler procedure is needed.

4.2 SIMULATION ISSUES

1. FAA is working with NASA to reduce the time necessary to develop terminal procedures by
doing as much of that as possible through simulation. At present, FAA requires 200 to 300 hours
of flight time just to test the new approach. It could take as long as eight years to get a totally new
terminal procedure developed. Simulation is the key, and FAA is looking into what simulation
might do for the certification process.

2. Simulation has potential, but to get anything believable in the sense of doing a certification for
noise through simulation, we have a long way to go for tiltrotors.
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4.3 NOISE STANDARDS FOR THE MILITARY

1. At present there does not exist a requiremnent for the military to meet a certain noise standard.
2. There exists a Memorandum of Agreement between the Defense Department and the FAA that,
as the full-scale development flight program of V-22 proceeds, FAA can obtain noise data. The
FAA will work with the military and NASA to coordinate additional noise data collection needed.
This is to be done without jeopardizing the schedule of the military.

4.4 LOW-FREQUENCY NOISE OF TILTROTOR AIRCRAFT AND NOISE
METRICS

1. Low frequency impacts need to be considered in the noise metrics.

2. If low frequency is going to be incorporated in the noise metrics for tiltrotor, helicopter noise is
also going to be a consideration. If we can improve the noise levels, make it more of a good
neighbor and more acceptable, then we're fulfilling our mission of advancing aviation and
improving the national aerospace system.

3. A demonstration of noise comparison between a tiltrotor aircraft and an existing turboprop, say
a SAAB 350, for the same altitude and air speed will be useful.

4. Georgia Tech has built a low frequency sonic boom noise simulator with a capability of
generating 3 Hz to 4 kHz noise. This will be used to examine building and human response. The
results from this study may be applicable to the impact of low-frequency tiltrotor noise on
buildings and the community. This noise source will allow simulation of tiltrotor noise on
buildings and human subjects.

4.5 WHAT DECIBEL LEVEL WILL BE ACCEPTABLE?

1. At present, there doesn't seem to be a specified decibel level for tiltrotor aircraft noise that will
be acceptable to the community. It is envisioned that at a very minimum, this aircraft will have to
meet the requirement for Stage 3. By the time this aircraft comes in, it may have to meet Stage 4,
yet to be determined.

2. In arecent comparison (of tiltrotor noise) with Stage 3, it appeared to meet these requirements.
But the issue with the tiltrotor aircraft is different. Unlike a National Airport type of landing, the
tilrotor landing is expected to take place somewhere downtown or somewhere in an urban
residential area. As such, Stage 3 could be misleading here. Conventional Stage 3 for airplanes at
an airport does not really apply to a downtown vertiport in a populated area.
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4.6 TILTWING VERSUS TILTROTOR

1. NASA has assessed the noise performance of tiltwing versus the tiltrotor aircraft.

2. The tiltwing aircraft is expected to be noisier than the tiltrotor aircraft, but how much noise is
not known at this stage.

3. The tiltwing aircraft will have more of a propeller type sound.

4. The tiltwing aircraft will have more high frequency sound compared to the tltrotor aircraft.

4.7 MODEL-SCALE EXPERIMENTS

In relation to performing experiments using small-scale models, what really matters is the ratio of
the tip speed to the induced velocity. The smallest wind tunnel model for tiltrotor appears to be that
of Professor A. George of Comell University.

4.8 AVAILABILITY OF FUNDS FORR & D
No specific comments were made on the availability of funds for R&D in tltrotor noise.
4.9 EN ROUTE NOISE

In relation to en route noise of advanced turboprop aircraft tested at NASA Lewis, it was
mentioned that the most interesting thing in that data base is that there is no variability whatsoever
in the noise signature on the fuselage. However, on the ground, there is a considerable amount of
variability. A theoretical model needs to be developed to understand this behavior. (This relates to
cruise noise of tiltrotor aircraft.)

4.10 V-22 NOISE DATA
1. Very little V-22 flight noise data is available.

2. Representatives of FAA will provide information to the V-22 Program Office on what needs to
be done in terms of noise testing.
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4.11 QUALITY OF DATA ACQUIRED STATICALLY

Some concern was raised by some of the workshop participants over the quality of airplane-mode
and hover-mode acoustic data acquired statically. The proximity of the ground plane and the static
operation can cause ingestion of considerable turbulence into the rotor plane that produces noise
anomalies which may not occur in flight.

4.12 NOISE REDUCTION
Questions were asked on the potential decibels by which noise from tiltrotors could be reduced. It

was felt that it was possible to achieve 10 dB reduction. From a pure design point of view. BVI
could be treated for the approach case by diffusing the tip vortex.

4.13 VALIDATION TESTS
It was suggested by some that it will be difficult to get flying time on a V-22 or an XV-15 to

conduct certain noise validation testing. One may have to resort to the use of helicopters as a
validation tool.
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SECTION 5
PANEL DISCUSSION

The panel discussion was chaired by Dr. Al George of Cornell University. The panelist were: Mr.
George Unger, Dr. Marianne Mosher, Dr. Jim Yu, Mr. Harry Sternfeld, Mr. Charles Cox, Dr.
Dan Schrage, and Mr. Steve Fisher.

A summary of the issues raised during the panel discussion is provided below.

5.1 FUNDING

Mr. Unger mentioned that the funding is rather tight to do a lot of things that should be done. He
alluded to the fact that NASA cannot test the V-22 because " the only way to do it was to pay the
manufacturer, and that's too expensive.”

5.2 SECOND GENERATION V-22

Mr. Sternfeld expressed concern on hearing all the keying on the V-22 and the data derived
therefrom. The V-22 was designed as a military vehicle. The driving attributes were payload,
speed, size, maneuverability, and cost. Noise did not enjoy a very high priority on the V-22, what
Mr. Sternfeld called a "first generation civil tiltrotor.” The second generation civil tiltrotor will
perhaps be a V-22 derivative of some kind. Mr. Sternfeld believed that the second generation can
be quieter, if noise is given a higher priority. '

5.3 INTERAGENCY COOPERATION

Mr. Unger would like NASA and FAA to work together and help each other out.

5.4 NOISE REDUCTION

1. Dr. Yuindicated that the area of active control needs to be speeded up and that there should be
synergistic cooperation involving all sectors responsible for technology.
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2. Referring to noise reduction methodologies, Mr. Sternfeld mentioned improved aerofoil
development. Referring to the helicopter noise reduction related effort sponsored by NASA on tip
shapes, higher harmonic control, and vortex modification devices, he indicated that some of them
will be applicable to tiltrotors as well. He recommended that the issue of number of blades should
be further researched, and encouraged all to stay inventive.

5.5 IS THERE A CIVIL TILTROTOR MARKET?

1. Mr. Cox indicated that the civil tltrotor, if it ever comes about, is going to be developed much
differently than what happened with the helicopter case of the last 20 to 30 years. In the case of the
helicopter, a vehicle or vehicles existed before the civil helicopter market was created. The
operators themselves ventured a lot of risk capital to create markets for the helicopter. With regard
to the tiltrotor, " ---all the research was identified, and the needs identified in this conference
(workshop), --." For tiltrotors, the markets will have to be developed first. " That market has to be
developed really betfore the vehicle gets there. That may be impossible, but I think that's the
challenge.”

Mr. Cox also impressed upon the workshop participants that to begin developing the markets for
tiltrotor aircraft, XV-15 and V-22's will be the only vehicles within a reasonable time frame. For
the community to accept the tiltrotor, we have to convince them that its noise is acceptable. For the
community to understand what the tiltrotor sounds like or compares to, the community needs a
reference which will be comparable to current helicopters that they have experience with. So. part

of the market creation is to educate the community about the features of the current tiltrotor.

2. Dr. Schrage expressed a need for pulling together en route planning, approach procedures,
flight mechanics and control, and geographical information systems to create a civil tiltrotor market
and to educate the community. An infrastructure within the government working with industry and
universities needs to be put together quickly. Dr. Schrage did not think that there will be a civil
tiltrotor transport in operational use before the end of this century.

3. Mr. Fisher agreed with the earlier statements by others that one has to have the market there.
He also agreed that the infrastructure, the systems, the routes, the facilities, the air traffic control,
the pilot techniques, etc., have to be in place before the industry is willing to build the aircraft and
the carriers are willing to buy them. Mr. Fisher mentioned the FAA’s goal is to be able to pool
resources and be able to get the synergy necessary. His interests lie in being able to identify those
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requirements where joint use can be made of the expertise available in all sectors: government,
industry, and academia.

4. Major Losier contradicted an earlier statement by Dr. Schrage about when a civil tiltrotor
aircraft could be built. He implied that it could be built pretty quickly so long as the infrastructure
problem was solved. He suggested that there are a number of bottlenecks out there which should
also be looked at. Maj. Losier stressed that any technology development dealing with acoustics
should be timed with the development of the infrastructure. He then urged all concemed to match
acoustics efforts with all other efforts.

5. Mr. Fisher outlined a summary of the plans in the noise area for the next five years concurrent
with terminal approach procedures. He indicated that the terminal approach is the tip of the iceberg
to the next step, which is transition. The knowledge gained from noise research and development
must teed into all the work related to infrastructure requirements. Mr. Fisher also alluded to the
sensitive nature of tiltrotors in the eyes of the major carriers and their near term major airport
expansion plans.

6. Continuing on the subject of the challenges facing the development of a marketable civil
tilrotor, Mr. Sternfeld pointed out that a parent company does not launch a new program until it
has signed customers. He warned that even in the case of Boeing 777, it was launched only after
about two airlines had signed. Most helicopter operators are financially not as strong as the airline
operators. They may not be willing to take "that kind of venture." He then advised that
“somebody's going to have to start the ball rolling and actually demonstrate that money can be
made---."

7. Dr. Schrage mentioned that the secret of success is to get the entire aviation community behind
ultrotor. He argued that to succeed, there has to be an effort on the part of the government to put
enough funds to get tiltrotor off and running. This should also be done without jeopardizing the
existing elements of aviation industry, especially the commuter industry. The tiltrotor market
should thus be sold as a new form of transportation, and not as an alternative to existing commuter
transport.

8. Mr. Fisher agreed with the fact there are a number of different risks in building the tiltrotor

aircraft. These risks are faced by the FAA, NASA, by the local communities, and by some of the
regional authorities who are going to be putting their prestige and support behind this kind of joint
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operation. "--there is an operational risk, there's a certification risk, and I think there is a technical

risk,---"
§.6 TILTWING VERSUS TILTROTOR

1. Some discussion was also held on the subject of the tiltwing. Mr. Fisher pointed out that the
charter of his vertical flight program office was "vertical flight” and not just "tiltrotor.” He felt that
it was valid that they start looking into tiltwing. He would like to approach tiltwing noise as well,
building off of the initiative already started in the tiltrotor area. FAA has not identified a specific
tiltwing program, but it is something that they would be interested in.

2. Mr. Unger said that NASA had a different view than that of FAA on the subject of tiltwing.
If FAA receives a ccrtification application, it has to respond. NASA, on the other hand, has a
little more liberty in deciding its priorities. NASA has chosen to focus on those things where it can
best do its work and make a difference. Based upon the market for tiltrotor versus tiltwing, NASA
has opted for tiltrotor. Tiltwing can benefit from a lot of work being conducted in the area of
tiltrotors, and NASA will support tiltwing research, but not as a major effort.

3. An interesting question was asked by the Panel Chairman, Prof. George: "If you were starting
all over again, and the V-22 wasn't there, would you look at tiltwing?" The response of both Mr.
Cox of Bell Helicopter and Mr. Sternfeld of Boeing was negative. Mr. Cox's rationale behind his
response was related to design from an aerodynamic point of view and also his concern about
higher noise from the tiltwing. Mr. Cox was apprehensive about the solution of the stall problem
of the tiltwing during conversion. Also from a noise point of view, Mr. Cox mentioned that the
disk loading will be very high for the tiltwing, which will make it very noisy, and there is very
little that can be done in that high powered transitional corridor. Mr. Cox also indicated that the
market for tiltwing is very limited.

4 Mr. Sternfeld of Boeing Helicopter supported Mr. Cox's contention on the limited market for
tiltwing. It will serve a smaller passenger market. Mr. Sternfeld also pointed out that a smaller
tiltwing meeting a market for fewer passengers than the V-22 or a tiltrotor isn't necessarily noisier.
But if one compares size for size, same weight, the tiltwing will be noisier.

5 In connection with the larger size tiltrotor, Dr. Schrage brought up a very interesting feature in
favor of the tiltwing. " When you get bigger and bigger, you have the option of putting four props
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on a tiltwing. You can't put four rotors on a tiltrotor very easily.” Mr. Unger, however, had
arguments to counter these remarks by Dr. Schrage.

5.7 OTHER ISSUES

1. A question was raised by Dr. Ahuja : “ ---has anybody considered using ducted propeller---."
The response received was that it has been considered but it is not a viable choice for tiltrotor
applicatdon.

2. In relation to grass root support from the public for tiltrotor technology, Mr. Fisher would like
to know how best to get the government to take the lead.

5.8 NOISE PREDICTION

Moving on to the issue of tiltrotor noise prediction, it was mentioned that we are probably half way
to being able to predict noise from a V-22 type vehicle. Because of the lack of acoustic data, only a
limited validation of the prediction codes has been made to date.

5.9 THE BIGGEST CHALLENGE IS BVI

1. Referring to rotorcraft noise, Mr. Golub named BVI as the the biggest challenge in prediction
of noise, and perhaps the one that holds the key to making it really quiet.

2. Inrelation to BVI, it is very difficult with the current state of the art to predict the position and
the strength of a tip vortex. These aecrodynamic parameters need to be understood and predicted
before the acoustics can be modeled. It will take creative, intelligent people along with big
computers to resolve this issue. Mr. Unger mentioned subsequently that the understanding of
vortices is not a unique problem for the rotorcraft community alone; the fixed wing researchers are
just as concerned. It affects capacity, and it affects separation between aircraft during approach and
take-off.

3. NASA Langley is sponsoring efforts at reducing BVI with three companies at present: Boeing
Helicopter, McDonnell Douglas, and UTRC. The initial effort is focused on analysis through CFD
to establish if there is potential for controlling BVI. The possibility of funding the verification will
be considered later.
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4. It was recommended that all reseachers working on BVI should become part of a task force and
work together for a period of a couple of years. Dr. Yu recommended that a crash program
involving university innovative concepts on BVI noise reduction be initiated.

5.10 DESIGN FOR NOISE CAPABILITY

1. Dr. Yu stressed that while we are moving forward with the civil application, we should also
keep military requirements in mind (during research and development). He also mentioned that the
future challenge of the rotorcraft/helicopter is really in the civil sector, and the noise issue will
become a more important design issue than ever before.

2. Dr. Yu also reemphasized the need to develop, in the near term, a preliminary or the first
version of the design for noise capability. " I personally think that's one area that has been grossly
under-explored in rotorcraft aeroacoustics research. NASA will step up research in this area in
future years."

5.11 FUTURE WORK

1. Mr. Unger wanted to make sure that in addition to BVI, there are other concerns that one can
work on a near-term derivative of the V-22. Some of these concerns are: does the pilot have to
hear the noise: does he have to have a noise dial in his cockpit that he has to worry about: how do
you sense noise from the outside and display it to the pilot; does it all have to be automatic; does it
increase his workload?

2. Mr. Unger also pointed out the need to have a model with pressure instrumented blades.
Further work needs to be done to address the cockpit noise issues for noise abatement maneuvers.

3. Dr. Schrage gave his impressions of the workshop. His recommendation for future work was

in the area of operations, different flight paths, trajectories and their impact on noise footprints and
other kind of environments. He expressed his views on the importance of simulation studies.
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SECTION 6
SUMMARY AND RECOMMENDATIONS

This workshop was the first of its kind and all in attendance found it quite productive. There was a
general consensus that such a workshop should be held again within 12 months.

Summarized statements of the important issues raised during the presentations, during the question
and answer period, and during the panel discussion have already been provided in the previous
sections. Only an overall summary is provided below. Also, Table 1 provides a summary of the
emphasis of each presentation and an indication of what other aspects of tiltrotor noise were
covered in each briefing.

6.1 NOISE GENERATION

The biggest challenge in the area of understanding rotorcraft noise generation is to be able to
predict the aerodynamics of blade vortex interaction (BVI). It is recommended that concentrated
effort on the part of all parties concerned be made to understand BVI and noise therefrom.

6.2 NOISE PROPAGATION

This topic was not a major item of discussion. It was, however, pointed out that propagation of
low frequency noise is not well understood. Its impact on en route noise will have to be
determined.

6.3 NOISE DETECTION (CERTIFICATION)

Low-frequency noise associated with tiltrotor noise was discussed considerably. It is
recommended that its impact on the community, passengers, and structures be determined. It is
also recommended that the decibel level from tiltrotor aircraft that will be acceptable to the
community be established as soon as possible. A knowledge of this level will determine the
direction of other research efforts, such as the degree of noise reduction needed for the tiltrotor to
be acceptable. It is also recommended that low frequency be incorporated in the noise metrics.
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6.4 NOISE PREDICTION

Considerable work needs to be done in the area of noise prediction. A good quality acoustic data
base is needed to validate prediction codes. It is recommended that in future full-scale acoustic data
acquisition, all key personnel working on noise prediction be consulted.

6.5 NOISE REDUCTION

A number of suggestions were made during the workshop on methods of noise reduction. They
include: increased spacing of fuselage/proprotor, active control techniques, low noise blades/tip
configurations, improved airfoil shape, increased number of blades, tip vortex diffusion devices,
reduced tip speed, blade planform, variable diameter blades, and others. It is recommended that a
systematic study be conducted to evaluate and rank all of these and other methods of controlling
tiltrotor noise.

6.6 TILTROTOR VERSUS TILTWING

A systematic comparison of noise generated by the two main competing configurations, tiltrotor
and tiltwing, has not been made, although a number of differing arguments were presented in favor
of one against the other. It is recommended that a thorough comparison be made to evaluate the
noise performance of the two configurations.

6.7 CERTIFICATION PROCEDURES

If the current helicopter certification procedures are any example, the certification procedures for a
tiltrotor aircraft may prove to be a nightmare. It is recommended that a simpler procedure of
certification be implemented.

Current thinking that compliance with Stage 3 may be acceptable could be totally misleading.

Conventional Stage 3 for airplanes at an airport does not really apply to a downtown vertiport in a
populated area.
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6.8 SIMULATIONS

The time necessary to develop terminal procedures can be reduced considerably thrcugh
simulation. It is recommended that work on simulation be continued even though to get anything
believable in the sense of doing certification of noise for tiltrotors may take a long time.

6.9 SMALL-SCALE MODELS

There exists a dire need for an instrumented small-scale model. It is recommended that one such
model be built and be made available to all of the research community. The blades of the model
must be instrumented.

6.10 DESIGN FOR NOISE CAPABILITY

NASA Langley’s effort on “design for noise capability” is an attractive effort and should be
stepped up in the future.

6.11 TILTROTOR MARKET, INFRASTRUCTURE, AND
ACOUSTICSR & D

A civil tilrotor market is highly dependent upon the infrastructure, the systems, the routes, the
facilities, the air traffic control system, the pilot techniques, etc. It is recommended that
requirements be identified where joint use can be made of the expertise available in all sectors:
government, industry, and academia. It is also recommended that preparations be made to educate
the community about the features of the current tiltrotor.

It is also recommended that any R & D in tiltrotor acoustics be closely timed with the development
of the infrastructure. In addition, all acoustics efforts should be timed with all other efforts.

6.12 LAND USE PLANNING AND PUBLIC ACCEPTANCE

Thorough use should be made of the principles of urban planning for noise control. It is
recommended that efforts be made to get the public behind the tiltrotor program by working with
the community, designing an ordinance that gives the community a means of control.

48




6.13 INTERACTION WITH THE ACADEMIC COMMUNITY

Interaction with the academic community needs to be increased. It is recommended that the
resources of the academic community be used to develop an “all-inclusive” code. A computer
simulation should be developed and verified with high fidelity experiments to incorporate flight
paths, flow around the vehicle, vibrations of the vehicle components, acoustic wave propagation,
and noise footprints as a function of operating conditions and geometrical variations. It is also
recommended that a crash program involving university innovative concepts on BVI noise
reduction be initiated.

6.14 LESSONS FROM PROPFAN RESEARCH

Advanced turboprop (ATP) prediction methodology is directly applicable to the “airplane” flight
regime of tiltrotor aircraft. ATP angle of attack methodology could also work for tiltrotor aircraft
in the airplane mode, subject to validation for large angles of attack. It is recommended that full
use be made of the rich knowledge available in the area of propfan acoustics.

6.15 OTHER ISSUES
A number of other issues are addressed in the bulk of the text of this report. It is recommended
that due consideration be giver to them also for the ultimate successful launching of the civil
tiltrotor in the market place.

6.16 SECOND WORKSHOP ON TILTROTOR AIRCRAFT NOISE

It is recommended that the subject of tiltrotor aircraft noise be revisited on a later date by holding a
second workshop within 12 months.
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